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ABSTRACT 

International standards for wind turbine certification 
depend on finding long-term fatigue load distributions 
that are conservative with respect to the state of 
knowledge for a given system.  Statistical models of 
loads for fatigue application are described and 
demonstrated using flap and edge blade-bending data 
from a commercial turbine in complex terrain.  
Distributions of rainflow-counted range data for each 
ten-minute segment are characterized by parameters 
related to their first three statistical moments (mean, 
coefficient of variation, and skewness).  Quadratic 
Weibull distribution functions based on these three 
moments are shown to match the measured load 
distributions if the non-damaging low-amplitude ranges 
are first eliminated.  The moments are mapped to the 
wind conditions with a two-dimensional regression over 
ten-minute average wind speed and turbulence 
intensity.  With this mapping, the short-term 
distribution of ranges is known for any combination of 
average wind speed and turbulence intensity.  The long-
term distribution of ranges is determined by integrating 
over the annual distribution of input conditions.  First, 
we study long-term loads derived by integration over 
wind speed distribution alone, using standard-specified 
turbulence levels.  Next, we perform this integration 
over both wind speed and turbulence distribution for the 
example site.  Results are compared between standard-
driven and site-driven load estimates.  Finally, using 
statistics based on the regression of the statistical 
moments over the input conditions, the uncertainty (due 
to the limited data set) in the long-term load distribution 
is represented by 95% confidence bounds on predicted 
loads. 
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DE-AC04-94AL85000.  

INTRODUCTION 

Design constraints for wind turbine structures fall into 
either extreme load or fatigue categories.  In the case of 
extreme load design drivers, the load estimation 
problem is limited to finding a single maximum load 
level against which to assess the structural strength.  
For design against fatigue, however, loads must be 
defined over all input conditions and then summed over 
the distribution of input conditions weighted by the 
relative frequency of occurrence.  While this might 
seem to be a more daunting task, it is in many ways 
quite similar to the extreme load problem, as can be 
seen by comparing with Fitzwater and Winterstein1.  In 
both cases, the loads must be determined as functions of 
wind speed (or other climatic conditions). 

Parametric models define the response, statistically, 
with respect to input conditions.  Such models fit 
analytical distribution functions to the measured or 
simulated data.  The parameters of these distribution 
functions can be useful in defining the response/loads 
as a function of the input conditions.  The end result, 
then, is a full statistical definition of the loads over all 
input conditions. 

In the most prevalent alternative to parametric 
modeling, an empirical distribution of loads (i.e., a 
histogram describing frequency of occurrence of the 
modeled response quantity) is used to define the turbine 
response at the conditions of the measurement or 
simulation.  When using simulations, a ten-minute time 
series is generated at specified environmental 
conditions using an aeroelastic analysis code.  The time 
series is rainflow-counted and the number of ranges in 
specified intervals is summarized in histograms.  The 
histograms serve as empirical distributions that are 
taken to be representative of the response of the turbine 
at those particular conditions.  The full lifetime 
distribution is then obtained by summing the 
distributions after weighting by the frequency of 
occurrence of the wind speed associated with each 
simulated data segment included in a histogram 
interval.  In the case of measured data, a similar 
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approach has been described by McCoy et al.2 but with 
an innovative weighting scheme to account for the 
irregular input conditions of field measurements. 

The empirical approach uses only the measured or 
simulated data without any fitting of distributions or 
extrapolation to higher values that would be seen if 
more data were obtained.  One of the disadvantages of 
using a purely empirical approach is, therefore, that the 
loading distribution may not be representative.  Perhaps 
a subtler shortcoming is that the uncertainty in the loads 
is almost impossible to characterize. 

With regard to uncertainties in loads and how they 
might be dealt with in design, one might expect that 
these uncertainties could be covered by the use of 
standard specifications of characteristic loads (derived 
from a specified high turbulence level) and safety 
factors.  However, current standard load definitions use 
safety factors that do not depend on the relative 
uncertainty in the load estimates.  Either the margins 
are larger than they need to be when load estimates are 
reasonably well established (i.e., exhibit low 
uncertainty), or they fail to cover the uncertainty when 
load estimates are based on limited data (i.e., large 
uncertainty cases). 

 Parametric load distribution models offer significant 
advantages over empirical models; they provide a 
means to (1) extrapolate to higher, less frequent load 
levels, (2) map the response to the input conditions, and 
(3) calculate load uncertainty.  For example, Ronold et 
al.3 have published a complete analysis of the 
uncertainty in a wind turbine blade fatigue life 
calculation.  They used a parametric definition of the 
fatigue loads, matching the first three moments of the 
wind turbine cyclic loading distribution to a quadratic 
(transformed by a squaring operation) Weibull 
distribution.  

Veers and Winterstein4 described a parametric 
approach, quite similar to that employed by Ronold et 
al.3, that can be used with either simulations or 
measurements, and have shown how it may be used in 
an uncertainty evaluation.  Although Reference 4 
describes how to use the statistical model to estimate 
the complete load spectrum, it does not indicate how 
these models compare with the design standards5.  It is 
critical that the load distributions generated by any 
statistical methodology be adaptable for use in existing 
design standards.  Moreover, it is arguably even more 
important that the load model provide insight into how 
the design standards might be improved in future 
revisions.  The standards should require an accurate 
reflection of the load distribution with sufficient 
conservatism to cover the uncertainties caused by the 

limited duration of the sample, whether based on 
simulation or field measurements.  Only then can 
design margins be trimmed to the point of least cost 
while still maintaining sufficient margins to keep 
reliability levels high. 

The approach to load modeling is not uniform across 
the wind community by any measure.  This lack of 
commonality in approach was reflected in the working 
group that produced IEC’s Mechanical Load 
Measurement Technical Specification6.  No consensus 
could be obtained on how to use measured loads to 
either create or substantiate a fatigue load spectrum at 
the conditions specified in the Safety Standard5.  All 
that is offered are several examples of differing 
approaches in an annex of the specifications6. 

Here, we present a methodology for using measured or 
simulated loads to produce a long-term fatigue-load 
spectrum at specified environmental conditions and at 
desired confidence levels.  To illustrate, example 
measurements of the two blade-root moments (flap and 
edge) from a commercial turbine in complex terrain are 
used.  The ten-minute distributions of rainflow ranges 
are modeled by a quadratic Weibull distribution 
function based on three statistical moments of the 
ranges (mean, coefficient of variation, and skewness).  
The moments are mapped to the wind conditions by a 
two-dimensional regression over ten-minute average 
wind speed and turbulence intensity.  Thus, the “short-
term”  distribution of ranges may be predicted for any 
combination of average wind speed and turbulence 
intensity.  The “ long-term”  distribution of ranges is, 
then, easily obtained by integrating over the annual 
distribution of input conditions.  Results are compared 
between standard-driven and site-driven load estimates.  
Finally, using statistics based on the regression of the 
statistical moments over the input conditions, the 
uncertainty (due to the limited data set) in the long-term 
load distribution is represented by 95% confidence 
bounds on predicted loads. 

IEC LOAD CASES 

The loads specified by IEC 61400-1 Wind Turbine 
Generator Safety Requirements for design must be 
defined for a specified combination of mean wind speed 
and turbulence intensity known as the Normal 
Turbulence Model5.  The standard provides an equation 
for the standard deviation of the ten-minute wind speed, 
σ 1, that depends on the hub-height wind speed and two 
parameters, I15 and a. 

)1()m/s15( /151 ++= aaVI hubσ  (1) 
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Equation 1 is based on wind speed standard deviation 
data gathered from around the world and aggregated 
into a common data set.  The equation was created to be 
“broadly representative of sites with reasonable 
international marketing interest,” 8 and does not 
represent any single site.  σ 1 is intended to represent a 
characteristic value of wind-speed standard deviation. 
Certification guidelines are provided for high (A) and 
moderate (B) turbulence sites.  I15 defines the 
characteristic value of the turbulence intensity at an 
average wind speed of 15 m/s, and a is a slope 
parameter when σ 1 is plotted versus hub-height wind 
speed.  The values of these parameters for each 
category are shown in Table 1. 

CATEGORY 
A 

(HIGH) 
B 

(MODERATE) 
I15 0.18 0.16 
a 2 3 

Table 1:  Parameters for IEC turbulence categories. 

The Category B moderate turbulence specification is 
intended to roughly envelope (i.e., be higher than) the 
mean plus one sigma level of turbulence for all the 
collected data above 15 m/s. Similarly, Category A 
envelopes all collected values of turbulence intensity 
(with the exception of one southern California site) for 
mean wind speeds above 15 m/s and is above the 
overall mean plus two sigma level in high winds8.  
Clearly, the IEC Normal Turbulence Model is intended 
to be conservative for all but the most turbulent sites. 

It is a relatively straightforward matter to create a 
loading distribution that meets the standard criteria 
when using an aeroelastic simulation code.  Input winds 
can be generated for any combination of wind speed 
and turbulence intensity.  Representative loadings can, 
in theory, be generated by simulating repeatedly until 
sufficient data are produced to drive the uncertainty to 
an arbitrarily small level.  Practically, however, it 
would be beneficial to generate a loading distribution 
with small, or at least known, uncertainty from a 
smaller data set.  This is where the parametric approach 
provides significant value.  By means of regression of 
load statistics (e.g., moments) over the entire range of 
wind speeds and turbulence levels, the uncertainty in 
the values of the parameters defining the short-term 
distributions at any specified turbulence condition can 
be estimated. 

In the case of measured loads, it may be simply 
impossible to gather data at the specified turbulence 

conditions because of the limitations of the test site.  In 
that case, the parametric approach provides a method to 
interpolate to a specified turbulence level using all of 
the data collected (thus adding to the confidence of the 
interpolation), or to extrapolate beyond the limits of the 
measurements.  In either case, the parametric approach 
simplifies the generation of fatigue loads to Standard 
specifications. 

EXAMPLE DATA SET 

An example data set taken from the copious 
measurements of the MOUNTURB program7 is used to 
illustrate the parametric modeling process.  The data are 
comprised of 101 ten-minute samples of rainflow-
counted flap-wise and edge-wise bending-moment 
ranges at the blade root.  The test turbine is a WINCON 
110XT, a 110kW stall-regulated machine operated by 
CRES (the Centre for Renewable Energy Systems, 
Pikermi, Greece) at their Lavrio test site.  The terrain is 
characterized as complex.  

The original time series of the loads and winds were not 
available for further analysis; thus, only the rainflow-
counted ranges were employed.  The number of cycle 
counts was tallied in 50 bins ranging from zero to the 
maximum range in each sample.  A single ten-minute 
sample is categorized by the mean wind speed and the 
raw turbulence intensity at hub height.  The average 
wind speeds are limited to the range between 15 and 19 
m/s and thus reflect response in high wind operation.  
Turbulence intensities cover a wide range of operating 
conditions as can be seen in Figure 1.  The measured 
loads are summarized by frequency of occurrence in 
Figure 2a for flap moment ranges and in Figure 2c for 
edge moment.  Plots showing exceedance counts for 
specified flap and edge loads are shown in Figures 2b 
and 2d, respectively. 
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Figure 1 Wind speed and turbulence intensity values 

for the 101 10-minute data samples. 
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ESTIMATING UNCERTAINTY IN LONG-TERM 
LOADS 

To review, the parametric load modeling proposed here 
proceeds by (1) modeling loads by their statistical 
moments µi (i=1,2,3) and (2) modeling each moment µi 
as a parametric function of V and I (Eq. 6).  The 
moment-based model in step (1) is in principle 
independent of the turbine characteristics (although the 
optimal choice among such models may be somewhat 
case-dependent).  Hence, in this parametric approach, 
the turbine characteristics are reflected solely through 
the moment relations in Eq. 6; specifically, the 9 
coefficients ai, bi, ci (i=1,2,3).  For clarity, we organize 
these here into a vector, 

},,,,,,,,{ 333222111 cbacbacba= . 

Simpler 2-moment models would require only 6 
coefficients. 

The preceding section has shown one benefit of this 
parametric model. Because it permits load statistics to 
be estimated for arbitrary V and I, the results can be 
weighted to form the long-term loads distribution as in 
Eqs. 7-8 (and Figs. 9a-b).  Symbolically, we rewrite Eq. 
7 here, noting explicitly its dependence on the vector θ.  

dVVfIVrFrF )(),,|()|( ∫=  (9) 

(Eq. 8 can be rewritten analogously.) The foregoing 
results (Figs 9a-b) have used our best estimates for the 
entries of θ; i.e., the mean values of each entry in θ. 
These are the values of ai, bi, and ci cited in Table 2.  

A further advantage of the parametric model lies in its 
usefulness in estimating the effects of statistical 
uncertainty.  To clarify, it is useful to distinguish 
between the various terms in Eq. 9.  The quantities V 
and I are “random variables;”  that is, their future 
outcomes will show an intrinsic randomness that cannot 
be reduced by additional study of past wind conditions.  
In contrast, the 9 coefficients in θ are in principle fixed 
(under the model’s assumptions).  We may, however, 
be uncertain as to their values due to limited response 
data.  This “uncertainty”  (as opposed to “randomness”) 
can be reduced through additional sampling.  The 
consequence of having only limited data can be 
reflected through 95% confidence levels, for example, 
on the exceedance probability 1-F(r).  These are 
conceptually straightforward to establish by simulation.  
Assuming the entries of θ are each normally distributed, 
for example, one may (1) simulate multiple outcomes 
of θ; (2) estimate F(r) for each θ as in Eq. 9; and (3) 
sort the resulting F(r) values (at each fixed r value) to 
establish confidence bands; e.g., in which 95% of the 
values lie. 

Figures 11a and 11b show the 95% confidence level on 
the exceedance probability, 1-F(r), which result from 
the simulation procedure described above.  Each of the 
9 coefficients in Eq. 9 were generated as statistically 
independent, normally distributed random variables, 
with means and standard deviations given by Tables 2 
and 3, respectively.  (Correlation among these variables 
can also be included; however, this was not done here.) 
All of these results adopt the site-specific mean 
turbulence model; i.e., the results labeled “Average I at 
each wind speed”  in Figs. 9a-b.  These results from 
Figs. 9a-b are repeated in Figs. 11a-b, and referred to 
there as "deterministic" results. Also shown are 95% 
confidence results; i.e., probability levels below which 
95% of the simulations fall.   

The increase in probability, over the deterministic 
results in order to achieve 95% confidence, is found to 
be relatively modest.  This reflects the benefit of having 
as many as 101 10-minute samples.  If the same mean 
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(a) Flap-wise banding 
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(b) Edge-wise Bending 

Figure 11 95% Confidence levels on the exceedance 
probability of fatigue loads for the Lavrio 
site with turbulence set to the average value 
for each wind speed. 
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trends had resulted from fewer samples, the resulting 
95% confidence results would be correspondingly 
higher than the mean results.  Note also that, at least for 
flap-wise loads, the conservatism induced by the IEC 
turbulence models exceeds that required to cover our 
statistical loads uncertainty, based on the data at hand.  
Of course, as noted earlier, this IEC conservatism may 
be desirable to cover other sources of uncertainty.  
Finally, we caution again that these long-term load 
results are  intended for example purposes only; 
accurate numerical values would require data across a 
broader range of wind speeds. 

SUMMARY 

Fatigue load spectra are generated for arbitrary site 
conditions (wind speed and turbulence intensity 
distributions) by using parametric models to fit the 
short term load spectrum to the first three moments of 
the truncated rainflow range distributions and 
regressing the moments over wind speed and turbulence 
intensity.  The spectra are generated to specified IEC 
conditions for wind speed Class and turbulence 
Category.  The spectra are also generated for as-
measured scatter in the turbulence levels across all wind 
speeds.  The comparison of the two approaches reveals 
the level of conservatism that results from assumed 
high turbulence levels written into the current 
standards.  The selected confidence level can be 
calculated using the statistics from regression analysis.  
Since the confidence interval depends on the 
uncertainty in the load characterization, it could provide 
a better margin of safety on the loads than can be 
accomplished with an inflated turbulence level. The 
parametric approach presented here illustrates how 
statistically based standards may be able to reflect the 
uncertainty in the loading definition caused by finite-
length data records. 
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